NAG Fortran Library Routine Document G01BLF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

G01BLF returns the lower tail, upper tail and point probabilities associated with a hypergeometric distribution.

2 Specification

SUBROUTINE GO1BLF(N, L, M, K, PLEK, PGTK, PEQK, IFAIL)
INTEGER
N, L, M, K, IFAIL
real
PLEK, PGTK, PEQK

3 Description

Let X denote a random variable having a hypergeometric distribution with parameters n, l and m $(n \ge l \ge 0, n \ge m \ge 0)$. Then

$$\operatorname{Prob}\{X=k\} = \frac{\binom{m}{k}\binom{n-m}{l-k}}{\binom{n}{l}},$$

where $\max(0, l - (n - m)) \le k \le \min(l, m)$, $0 \le l \le n$ and $0 \le m \le n$.

The hypergeometric distribution may arise if in a population of size n a number m are marked. From this population a sample of size l is drawn and of these k are observed to be marked.

The mean of the distribution $=\frac{lm}{n}$, and the variance $=\frac{lm(n-l)(n-m)}{n^2(n-1)}$.

This routine computes for given n, l, m and k the probabilities:

PLEK =
$$Prob\{X \le k\}$$

PGTK = $Prob\{X > k\}$
PEQK = $Prob\{X = k\}$.

The method is similar to the method for the Poisson distribution described in Knüsel (1986).

4 References

Knüsel L (1986) Computation of the chi-square and Poisson distribution SIAM J. Sci. Statist. Comput. 7 1022–1036

5 Parameters

1: N – INTEGER Input

On entry: the parameter n of the hypergeometric distribution.

Constraint: $N \ge 0$.

[NP3546/20A] G01BLF.1

2: L – INTEGER Input

On entry: the parameter l of the hypergeometric distribution.

Constraint: $0 \le L \le N$.

M-INTEGER

On entry: the parameter m of the hypergeometric distribution.

Constraint: $0 \le M \le N$.

4: K – INTEGER Input

On entry: the integer k which defines the required probabilities.

Constraint: $max(0, L - (N - M)) \le K \le min(L, M)$.

5: PLEK – real Output

On exit: the lower tail probability, $Prob\{X \leq k\}$.

6: PGTK – real Output

On exit: the upper tail probability, $Prob\{X > k\}$.

7: PEQK – real Output

On exit: the point probability, $Prob\{X = k\}$.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

On entry, N < 0.

IFAIL = 2

On entry, L < 0, or L > N.

IFAIL = 3

On entry, M < 0, or M > N.

IFAIL = 4

On entry, K < 0, or K > L,

G01BLF.2 [NP3546/20A]

```
 \begin{array}{ll} \text{or} & \quad K > M, \\ \text{or} & \quad K < L + M - N. \end{array}
```

IFAIL = 5

On entry, N is too large to be represented exactly as a real number.

IFAIL = 6

On entry, the variance (see Section 3) exceeds 10^6 .

7 Accuracy

Results are correct to a relative accuracy of at least 10^{-6} on machines with a precision of 9 or more decimal digits, and to a relative accuracy of at least 10^{-3} on machines of lower precision (provided that the results do not underflow to zero).

8 Further Comments

The time taken by the routine depends on the variance (see Section 3) and on k. For given variance, the time is greatest when $k \approx lm/n$ (= the mean), and is then approximately proportional to the square-root of the variance.

9 Example

This example program reads values of n, l, m and k from a data file until end-of-file is reached, and prints the corresponding probabilities.

9.1 Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
G01BLF Example Program Text
      Mark 14 Revised. NAG Copyright 1989.
*
      .. Parameters ..
      INTEGER
                       NIN, NOUT
     PARAMETER
                       (NIN=5,NOUT=6)
      .. Local Scalars ..
     real
                       PEQK, PGTK, PLEK
      INTEGER
                       IFAIL, K, L, M, N
      .. External Subroutines ..
      EXTERNAL
                       G01BLF
      .. Executable Statements ..
      WRITE (NOUT,*) 'G01BLF Example Program Results'
      Skip heading in data file
      READ (NIN, *)
      WRITE (NOUT, *)
     WRITE (NOUT, *) '
                         N
                            L
                                  M
                                      K
                                            PLEK
                                                      PGTK
                                                                 PEQK'
      WRITE (NOUT, *)
   20 READ (NIN, *, END=40) N, L, M, K
      IFAIL = 0
      CALL GO1BLF(N,L,M,K,PLEK,PGTK,PEQK,IFAIL)
      WRITE (NOUT, 99999) N, L, M, K, PLEK, PGTK, PEQK
      GO TO 20
   40 STOP
99999 FORMAT (1x,414,3F10.5)
      END
```

[NP3546/20A] G01BLF.3

9.2 Program Data

9.3 Program Results

GO1BLF Example Program Results

N	L	М	K	PLEK	PGTK	PEQK
10 40	_	-	1 2	0.77778 0.98785	0.22222 0.01215	0.55556 0.13664
155 1000	00	122 500		0.01101 0.42429	0.98899 0.57571	0.00779 0.04913

G01BLF.4 (last) [NP3546/20A]